GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding

نویسندگان

چکیده

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction cell mechanically stacked using low-temperature bonding process which involves micro metal balls on line high-optical-transmission spin-coated glue material. Current–voltage measurements of cells have carried out at room temperature both in dark under 1 sun with 100 mW/cm2 power density simulator. The reached an efficiency 24.5% open-circuit voltage 2.68 V, short-circuit current 12.39 mA/cm2, fill-factor 73.8%. This study demonstrates great potential for micro-metal-ball achieve high conversion three or more junctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D

Numerical modeling of polycrystalline thin-film solar cell serves as an imperative procedure to test the suitability of proposed physical clarification and to anticipate the effect of physical changes on cell performance. All in all, this must be conducted with only partial knowledge of input parameters. In this paper, we evaluated the numerical simulation of CdS/CIGS tandem multi junction sola...

متن کامل

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface.

We demonstrate the implementation of a hybrid solar cell that comprises a surface nanostructured n-type Si and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). The Si surface before deposition of the organic layer was nanostructured by using CsCl self-assembled nanoparticles as a hard mask and dry etching to form radial junction architectures and enhance light diffusion and absorption. ...

متن کامل

Quantum junction solar cells.

Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); h...

متن کامل

Efficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings

The effect of single and double-layer anti-reflective coatings on efficiency enhancement of silicon solar cells was investigated. The reflectance of different anti-reflection structures were calculated using the transfer matrix method and then to predict the performance of solar cells coated by these structures, the weighted average reflectance curves were used as an input of a PC1D simulation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crystals

سال: 2021

ISSN: ['2073-4352']

DOI: https://doi.org/10.3390/cryst11070726